

БЛОК ПИТАНИЯ ДАТЧИКОВ БПК-40М

2.087.016 P3

Руководство по эксплуатации

Настоящее руководство по эксплуатации (в дальнейшем – РЭ) предназначено для изучения устройства и работы блоков питания, преобразования и корнеизвлечения БПК-40М. РЭ содержит сведения и иллюстрации необходимые для правильной эксплуатации блоков.

1. Описание и работа

1.1. Назначение

Блоки питания датчиков БПК-40М (в дальнейшем – блоки) предназначены для организации питания датчиков с унифицированным выходным сигналом 0-5 или 4-20 мА постоянного тока, а также для функционального преобразования этого сигнала в другие уровни по двум выходным каналам с пропорциональной и корнеизвлекающей зависимостью.

Блоки содержат стабилизированный источник питания с выходным напряжением 36В постоянного тока, обеспечивающий работу датчиков или другого оборудования.

Блоки по ГОСТ 14254-2015 соответствуют степени защиты IP 54.

Блоки по устойчивости к климатическим воздействиям соответствуют исполнению УХЛ категории 3 по ГОСТ 15150-69, но для работы при температуре от минус 10 до 60 °C.

При эксплуатации блоков допускаются воздействия:

- синусоидальной вибрации с частотой от 5 до 25 Гц и амплитудой до 0,1 мм;
- магнитных полей постоянного и переменного токов с частотой (50±1) Гц и напряженностью до 400 А/м;
- относительной влажности от 30 до 80 % во всем диапазоне рабочих температур.

Запись блока при заказе должна быть следующей:

«Блок питания, преобразования и корнеизвлечения БПК-40М- $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{3}{5}$ $\frac{1}{4}$

где: 1 — наименование блока; 2 — предел допускаемой основной погрешности; 3 — входной сигнал; 4 — выходной сигнал 5 — количество.

Условные обозначения блоков приведены в таблице 1.

Таблица 1

		каемой основной иности, %	Входной	Выходной
Обозначение	пропорцио-	корнеизвлекаю-	сигнал	сигнал
	нальная харак-		I_{BX} , MA	І _{вых} , мА
	теристика	стика *		IDDIX, III I
БПК-40M - 111		± 0,25	0-5	0-5
БПК-40М - 112	± 0,15			4-20
БПК-40М - 121			4-20	0-5
БПК-40М - 122			4-20	4-20

Примечание - * погрешность на основном участке характеристики (в диапазоне входного сигнала от 5 до 100 %)

1.2 Характеристики

- 1.2.1 Питание блоков осуществляется от сети переменного тока напряжением ($220^{+22}/_{-33}$) В и частотой (50 ± 1) Гц.
- 1.2.2 Блоки обеспечивают питание датчиков от встроенного источника питания постоянного тока напряжением (36 ± 3.6) В, имеющего защиту от короткого замыкания и перегрузки.
 - 1.2.3 Номинальный ток нагрузки источника питания 50 мА.
- 1.2.4 Токи срабатывания защиты источника питания: от перегрузки не более 75 мA, от короткого замыкания не более 47 мA.
 - 1.2.5 Мощность, потребляемая блоками, не более 7,5 B·A.
- 1.2.6 Входная и выходные цепи блоков рассчитаны на работу с сигналами в соответствии с таблицей 1.
- 1.2.7 Входное сопротивление блоков не более 500 и 200 Ом для сигналов соответственно 0-5 и 4-20 мА.
- 1.2.8 Нагрузочные сопротивления не более 1,0 и 2,5 кОм для сигналов соответственно 0-5 и 4-20 мА
- 1.2.9 Блок имеет два канала преобразования в токовый сигнал информативного сигнала датчика.

Номинальная статическая характеристика одного канала – линейная и определяется формулой (1), другого – корнеизвлекающая - формула (2):

$$Y = Y_0 + \frac{Y_K - Y_0}{X_K - X_0} (X - X_0), \tag{1}$$

$$Y = Y_0 + (Y_K - Y_0) \sqrt{\frac{X - X_0}{X_K - X_0}},$$
(2)

где Y и X – текущие значения выходного и входного сигнала канала преобразования, мA;

 Y_0 , Y_K и X_0 , X_K — нижний, верхний пределы изменения выходного и входного сигнала соответственно, мА;

1.2.10 Пределы допускаемой основной погрешности в процентах от нормирующего значения равны:

- а) канала с пропорциональной зависимостью $-\pm 0.15$;
- б) канала с корнеизвлекающей зависимостью:
- ± 2 при изменении входного сигнала от 0 до 5 %;
- ± 0,25 при изменении входного сигнала в пределах от 5 до 100 %.

За нормирующее значение принимают разность пределов изменения выходного сигнала.

- 1.2.11 Пределы допускаемой дополнительной погрешности канала преобразования при изменении температуры окружающей среды на каждые 10 °C равны пределам допускаемой основной погрешности.
- 1.2.12 Пределы допускаемой дополнительной погрешности канала преобразования при изменении напряжения питания равны пределам допускаемой основной погрешности.
 - 1.2.13 Пульсация не превышает:
 - 80 мВ для выходного сигнала канала преобразования;
 - 40 мВ для напряжения цепей, питающих датчики.
- 1.2.14 Изоляция электрических цепей блоков между собой выдерживает в течение 1 мин действие испытательного напряжения переменного тока практически синусоидальной формы, частотой 50 Гц в соответствии с таблицей 5.

Электрическое сопротивление изоляции цепей блоков между собой не менее значений, приведенных в таблице 2.

Таблица 2

Проверяемые цепи	Испытатель- ное напря- жение, В	Сопротивление изоляции, МОм, при температуре	
	7K311710, B	(23 ± 5) °C	(60 ± 3) °C
Силовая цепь относительно корпуса, цепи питания датчика, цепи приема информативного сигнала и цепей преобразования	1500	40	10
Корпус относительно цепи питания датчика, цепи приема информативного сигнала и цепей канала преобразования	250	100	40

- 1.2.15 Средняя наработка на отказ не менее 120000 часов.
- 1.2.16 Средний срок службы 12 лет.
- 1.2.17 Масса не более 3 кг.
- 1.2.18 Габаритные и присоединительные размеры соответствуют приведенным в приложении А.
- 1.2.19 Блоки в упаковке для транспортирования выдерживают по ГОСТ Р 52931-2008:
- воздействие ударов со значением пикового ударного ускорения 98 м/с², длительностью ударного импульса 16 мс с общим числом ударов 1000 ± 10 в направлении, обозначенном на таре манипуляционным знаком «Верх»;
 - воздействие температур от минус 50 до 50 °C;

- воздействие относительной влажности (95 \pm 3) % при температуре 35 °C.
- 1.2.20 Степень пылевлагозащиты корпуса блока соответствует IP30 ГОСТ 14254-2015.

1.3 Состав изделия

В состав изделия входят блок и комплект запасных частей, к изделию прилагается техническая документация.

1.4 Устройство и работа

Общий вид блоков представлен в приложении Б.

Блоки конструктивно состоят из лицевой (1) и задней (2) панелей, соединенных стяжками (3), и крышки (4).

На стяжках крепится печатная плата (5), на которой расположены элементы электрической схемы, скоба с трансформатором Т (6) и предохранителем (7).

На лицевой панели находится световой индикатор HL (8), сигнализирующий о подключении блоков к промышленной сети питания переменного тока.

На задней панели находятся:

- разъем XP1, обеспечивающий подключение блоков к указанной сети питания;
- разъем XP2, обеспечивающий питание датчика и, одновременно, поступление информативного сигнала 4-20 мА (только для блоков с входным сигналом 4-20 мА) от этого датчика во входную цепь блоков;
- разъем XP3 (только для блоков с входным сигналом 0-5 мA), обеспечивающий поступление информативного сигнала 0-5 мA от датчика;
- разъемы XS1, XS2 для подключения нагрузки по выходным каналам с пропорциональной зависимостью (XS1) и с корнеизвлекающей зависимостью (XS2).

При монтаже крепление корпуса блоков к щиту осуществляется с помощью обоймы (9).

Структурные схемы блоков приведены в приложениях В и Г.

Блоки с входным сигналом 0-5 мА отличаются от блоков с входным сигналом 4-20 мА наличием дополнительного разъема XP3 и коммутацией внутренних цепей и перемычек на печатной плате.

Блоки состоят из понижающего трансформатора (Т), печатной платы (П) на которой расположены: элементы источника питания датчика (ИПД), элементы канала линейного преобразования (КЛП), элементы канала корнеизвлечения (КК), источник питания (ИП) линейного и корнеизвлекающего каналов. Оба канала имеют общий вход через разъем XP3 (для варианта 0-5 мА) и через разъем XP2 (для варианта 4-20 мА). Выход линейного канала выведен на разъем XS1, а корнеизвлекающего – на XS2.

Напряжение питания 220 В через разъем XP1 и предохранитель FU1 подается на первичную обмотку 1-2 понижающего трансформатора (Т). От вторичной обмотки (8-9) напряжение поступает на ИПД, а от вторичных

обмоток (10-11, 12-13) напряжение поступает на источник питания каналов.

Напряжение постоянного тока 36 В с разъёма XP2 поступает на датчик. При двухпроводной схеме питания датчика с информационным током (4-20) мА сигнал с датчика через этот же разъём поступает на входы канала корнеизвлечения и линейного канала.

При работе с датчиком с выходным сигналом (0-50) мА, сигнал от датчика поступает на входы каналов через разъём XP3. С клемм разъемов XS2 и XS1 снимаются выходные сигналы каналов корнеизвлечения и линейного канала соответственно.

1.5 Маркировка и пломбирование

- 1.5.1 На лицевой панели блока нанесено условное обозначение блока.
- 1.5.2 На боковой стороне блока нанесены следующие надписи:
- товарный знак предприятия-изготовителя;
- обозначение и исполнение блока;
- порядковый номер блока по системе нумерации предприятия-изготовителя;
 - диапазоны изменения входного и выходного сигналов;
 - выходное напряжение;
 - параметры сети питания (В, Гц);
 - знак утверждения типа;
 - надпись «Сделано в России»;
 - год выпуска.
- 1.5.3 У мест присоединения внешних электрических цепей блоков выполнена надпись «Сеть» и позиционные обозначения разъемов.
- 1.5.4 На транспортной таре нанесены манипуляционные знаки: «Хрупкое. Осторожно», «Верх».
- 1.5.5 Пломбирование блоков осуществляется заполнением пломбировочной пастой колпачка (10), крепящегося к крышке с помощью стягивающего винта (см. приложение Б).

1.6 Упаковка

- 1.6.1 Блоки упаковываются в коробки из коробочного картона или ящик из гофрированного картона, а затем укладываются в ящики типа IV по ГОСТ 5959-80.
- 1.6.2 При транспортировании в контейнере блоки должны быть уложены в коробки или ящики из картона.
- 1.6.3 Ящики должны быть обиты внутри водонепроницаемым материалом, который предохраняет от проникновения пыли и влаги.
- 1.6.4 Принадлежности и запасные части находятся в той же коробке, что и блок. Сюда же вложены паспорт и РЭ.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

2.1.1 Конструкция блоков рассчитана для монтажа на щите. В удобном для установки блоков месте, в щите делается вырез с размерами, указанными в приложении А.

С корпуса блока снимается обойма (9) (см. приложение Б).

Блок вставляется с лицевой стороны щита в вырез, а с обратной стороны щита крепится с помощью обоймы двумя винтами M5.

2.1.2 Запрещается эксплуатировать блоки в условиях, отличных от рабочих.

2.2 Подготовка блоков к использованию

2.2.1 По степени защиты человека от поражения электрическим током блоки относятся к классу 01 по ГОСТ 12.2.007.0-75.

Зажим заземления на корпусе блока должен быть электрически соединен с контуром заземления.

2.2.2 При получении ящиков с блоками необходимо проверить сохранность тары. В случае ее повреждения следует составить акт и обратиться с рекламацией к транспортной организации.

В зимнее время ящики с блоками необходимо распаковывать в отапливаемом помещении не менее чем через 8 часов после внесения их в помещение.

После распаковывания проверить комплектность в соответствии с паспортом на блок.

Рекомендуется сохранять паспорт, который является юридическим документом при предъявлении рекламации предприятию-изготовителю или поставщику.

В паспорт должны включаться данные касающиеся хранения и эксплуатации блока.

2.2.3 Соединение блоков с внешними приборами и цепями осуществляется согласно схемам (см. приложения Д и Е). Линии связи могут быть выполнены любым типом кабеля.

Входные и выходные цепи блоков должны быть экранированы и проложены отдельно от силовых цепей.

2.2.4 Подсоединение проводов кабеля к ответным частям разъемов блоков осуществляется с помощью пайки припоем ПОССу-60.

3 МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

Данный раздел устанавливает методы и средства первичной и периодических поверок блоков. Межповерочный интервал – два года.

3.1 Операции поверки

3.1.1 При поверке должны производиться операции, указанные в таблице 3.

Наименование операции	№ пп.
Внешний осмотр	3.7.1
Измерение электрического сопротивления изоляции	3.7.2
Проверка напряжения источника питания и токов защиты от перегрузки и короткого замыкания	3.7.3
Определение основной погрешности каналов преобразования	3.7.4
Оформление результатов поверки	3.5

3.2 Средства поверки

3.2.1 При поверке блоков необходимо применить средства поверки согласно таблице 4.

Таблица 4

40717144		
Наименование	Основные характеристики, необхо- димые для проверки	Рекомендуемое оборудование
Мегаомметр	Номинальное напряжение 100, 500 В; погрешность не более ± 2,5 %, пределы измерения от 0 до 100 МОм	Ф4101
Лабораторный ав- тотрансформатор	Пределы регулирования 0-250 В, ток нагрузки 2 А, контроль напряжения по вольтметру кл.1,0	ЛАТР-2М
Амперметр пере- менного тока	0-0,15 А; класс точности 0,5	Э 513/3
Вольтметр пере- менного тока	0-300 В; класс точности 0,5	Э 515/3
Миллиамперметр постоянного тока	Пределы измерения 0-15 мА, класс точности 2,5	Ц4313
Цифровой вольтметр	Класс точности 0,005/0,001	Щ31
Эталонная ка- тушка	Номинальное сопротивление 100 Ом; класс точности 0,01	P331
Магазин сопротив- лений	Класс точности 0,05	MCP-63
Генератор посто- янного тока	Диапазон от 0 до 20 мА Класс точности 0,05	КИСС-03
Примечание –	- допускается применение оборудовани	ия пюбых типов

Примечание – допускается применение оборудования любых типов, основные характеристики которых не хуже приведенных в таблице

3.3 Требования к квалификации поверителей

3.3.1 Поверку блоков должен выполнять поверитель, прошедший инструктаж по технике безопасности, освоивший работу с поверяемым блоком и используемыми эталонами.

Поверитель должен быть аттестован в соответствии с ПР 50.2.012-94 «ГСИ. Порядок аттестации поверителей средств измерений».

3.4 Требование безопасности

3.4.1 При проведении поверки необходимо соблюдать требования безопасности, предусмотренные «Правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей» (изд. 3), ГОСТ 12.2.007.0-75, ГОСТ 12.1.019-2017, ГОСТ 22261-94, указаниями по безопасности, изложенными в РЭ на поверяемый преобразователь, применяемые эталоны и вспомогательное оборудование.

3.5 Оформление результатов поверки

Положительные результаты первичной поверки оформляются записью в паспорте с указанием даты поверки и подписью поверителя, удостоверенной клеймом.

По результатам последующих поверок поверителем оформляется свидетельство о поверке согласно приказа Минпромторга России № 2510 от 31.07.2020 г. «Об утверждении порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

Блок, не удовлетворяющий требованиям одного из пунктов проверки, бракуется и не допускается к применению. При этом выпускается извещение о непригодности согласно приказа Минпромторга России № 2510.

ВНИМАНИЕ! Для нормальной работы блоков при использовании только одного выходного канала (либо с пропорциональной, либо с корнеизвлекающей зависимостью) необходимо подключить на выход неиспользуемого канала нагрузку, величина которой приведена в приложении Ж (R3). Нагрузки Rн1 и Rн2 не должны быть гальванически связаны друг с другом.

3.6 Условия поверки и подготовка к ней

- 3.6.1 Поверка блоков должна проводиться в нормальных условиях:
- напряжение питания (220 ± 4,4) В;
- коэффициент высших гармоник не более 5 %;
- температура окружающего воздуха плюс (23 ± 2) °C;
- время выдержки блоков после включения не менее 0,5 ч.
- 3.6.2 Перед началом поверки поверитель должен изучить руководство по эксплуатации поверяемых средств измерений, эталонов и других технических устройств, используемых при поверке, и правила техники безопасности.
- 3.6.3 Схема подключений для проверки блока приведена в приложении Ж.

3.7 Проведение поверки

3.7.1 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие блока комплектности, маркировке, целостность корпуса.

3.7.2 Измерение электрического сопротивления изоляции (п. 1.2.14)

Перед проверкой соедините накоротко контакты согласно таблице 5.

Таблица 5

Проверяемые цепи	Замкнутые контакты
Силовая цепь	XP1/1,2
Цепь питания датчика	XP2/1, 2
Цепи информативная и каналов	XP3/1, 2; XS1/1, 2; XS2/1, 2
преобразования	

Измерение проводите мегаомметром с номинальным напряжением:

- 500 В для цепей с испытательным напряжением 1500 В;
- 100 В для остальных цепей.

Мегаомметр подключите к проверяемым цепям и проведите отсчет показаний по истечении времени, за которое показания мегаомметра установятся.

Блок считают годным, если показания мегаомметра не ниже значений, приведенных в таблице 3.

3.7.3 Проверка напряжения источника питания и токов защиты от перегрузки и короткого замыкания

Проверку напряжения источника питания проводите, подключив проверяемый блок по схеме приложения Ж. С помощью магазина сопротивлений R1-1 установите номинальный ток, контролируя его по падению напряжения на эталонной мере сопротивления, затем подключите вольтметр ZV1 к выводам встроенного источника питания блока и зафиксируйте показания.

Блок считают выдержавшим испытания, если результат измерений соответствуют требованиям п.1.2.3.

Проверку токов защиты от перегрузки и короткого замыкания проводите только для блоков с входным сигналом от 0 до 5 мА, выполняя приведенную ниже последовательность операций.

Уменьшая сопротивление резистора R1-1, зафиксируйте показания вольтметра ZV1, подключенного к выводам a1, b1, в момент прекращения увеличения при последующем изменении R1-1.

Затем закоротите R1-1 и зафиксируйте показания ZV1.

Ток рассчитайте по формуле:

$$I = \frac{U}{100},\tag{1}$$

где I – значение тока, мА;

U – показание вольтметра, мВ;

100 – сопротивление эталонной меры, Ом.

Блок считайте годным, если напряжение и токи короткого замыкания и перегрузки, рассчитанные по формуле (1) не превышают значений по п. 1.2.2.

3.7.4 Определение основной погрешности (п. 1.2.10).

Определение основной погрешности проводите поочередно для каждого канала преобразования при пяти значениях входного сигнала, равномерно распределенных по диапазону, включая нижний и верхний пределы.

Значения входных и выходных сигналов приведены в таблицах 6, 7.

Таблица 6 — Значения входных и выходных сигналов для канала с пропорциональной зависимостью

Контролируемое значение информативного тока, мА		Расчетное значение выходного тока Івыхрас, мА	
Для диапазона		Для диапазона	
0 - 5 мА	4-20 мА	0 - 5 мА	4 - 20 мА
0,000	4,000	0,000	4,000
1,250	6,000	1,250	6,000
2,500	8,000	2,500	8,000
3,750	12,000	3,750	12,000
5,000	20,000	5,000	20,000

Таблица 7 – Значения входных и выходных сигналов для канала с корнеизвлекающей зависимостью

TONOBIO RAIO EMOTIVO OTBIO					
Контролируемое значение информативного тока, мА		Расчетное значение выходного тока, Івыхрас, мА		• •	
%	для диапазона		%	Для ди	апазона
70	0 - 5 мА	4-20 мА	70	0 - 5 мА	4 - 20 мА
0	0,0000	4,0000	0	0,000	4,0000
0,5	0,025	4,0800	7,07	0,35355	5,13136
1,0	0,0500	4,1600	10	0,5000	5,6000
25	1,2500	8,0000	50	2,5000	12,0000
49	2,4500	11,8400	70	3,5000	15,2000
100	5,0000	20,0000	100	5,0000	20,0000

Поочередно установите контролируемые значения информативного тока. Для блоков с входным сигналом 0-5 мА контролируемое значение тока задайте при помощи генератора тока GI.

Для остальных блоков – при помощи магазина сопротивления R1-1 (R1-2). Контроль устанавливаемых значений осуществите по цифровому вольтметру ZV1, подключенному к клеммам «напряжение» эталонной меры сопротивления, R2-1. Ток рассчитайте по формуле (1).

Для определения погрешности канала преобразования с линейной зависимостью подключите вольтметр к клеммам a2, b2. Для канала с корнеизвлекающей – к клеммам a3, b3.

Рассчитайте для каждого контролируемого значения:

- измеренные значения выходного тока, *Івыхизм*, мА, соответствующие контролируемым, по формуле (1);
- значения абсолютной погрешности преобразования по формуле
 (2):

$$\Delta = leыхизм – leыхрас, \tag{2}$$

Рассчитайте значения основной погрешности для канала сигнала:

$$\gamma = \frac{\Delta}{\mathcal{I}} \times 100,\tag{3}$$

где γ – погрешность преобразования, %;

△ – наибольшее из значений, рассчитанных по формуле (2), мА;

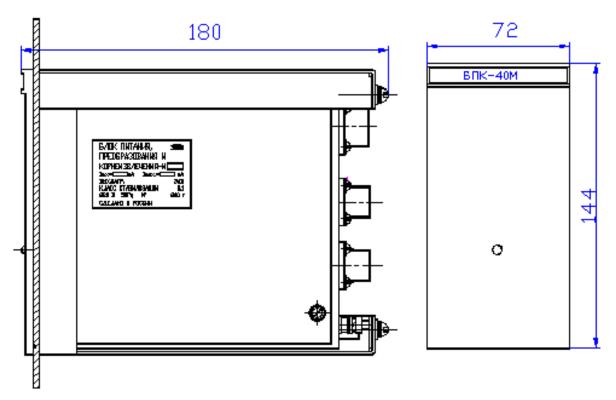
Д – нормирующее значение, равное 5 и 16 мА соответственно для диапазонов выходного сигнала 0-5 и 4-20 мА.

Блоки считайте годными, если значения основной погрешности каналов с пропорциональной и корнеизвлекающей зависимостью, рассчитанные по формуле (3), не превышает значений, указанных в п. 1.2.10, соответственно.

4 ХРАНЕНИЕ БЛОКОВ

4.1 Блоки должны храниться по условиям хранения 1 по ГОСТ 15150-69. В складских помещениях воздух не должен содержать пыли и примесей агрессивных паров и газов, вызывающих коррозию.

5 ТРАНСПОРТИРОВАНИЕ БЛОКОВ


- 5.1 Транспортирование блоков может производиться всеми видами транспорта в крытых транспортных средствах в соответствии с правилами перевозки грузов, действующих на данном виде транспорта.
- 5.2 Условия транспортирования блоков должны соответствовать условиям хранения 5, для морских перевозок в трюмах условиям хранения 3 по ГОСТ 15150-69.
- 5.3 Ящики с блоками должны транспортироваться и храниться в определенном положении, обозначенном манипуляционными знаками.

6 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1 Изготовитель гарантирует соответствие блоков требованиям технических условий при соблюдении условий хранения, транспортирования и эксплуатации.
- 6.2 Гарантийный срок эксплуатации 18 месяцев со дня ввода блоков в эксплуатацию.
- 6.3 Гарантийный срок хранения 6 месяцев со дня изготовления блоков.

2.087.016 P3

Приложение А
ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ БЛОКОВ
БПК-40М

Разметка на установку

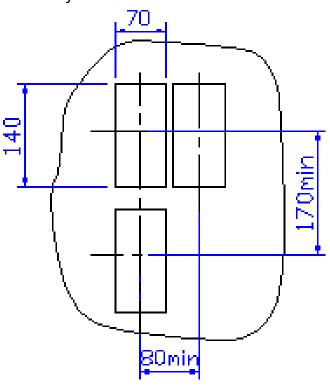
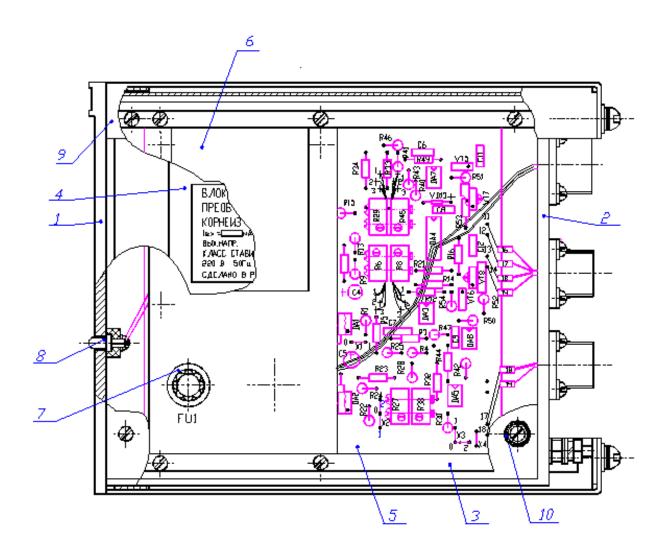



Рисунок А.1

Приложение Б (справочное) ОБЩИЙ ВИД БЛОКОВ БПК-40М

Рисунок Б.1:

1– лицевая панель; 2 – задняя панель; 3 – стяжки; 4 – крышка; 5 – печатная плата; 6 – трансформатор Т; 7– предохранитель FU1; 8 – сетевой индикатор HL; 9 – обойма; 10 – колпачок

продолжение приложения Б

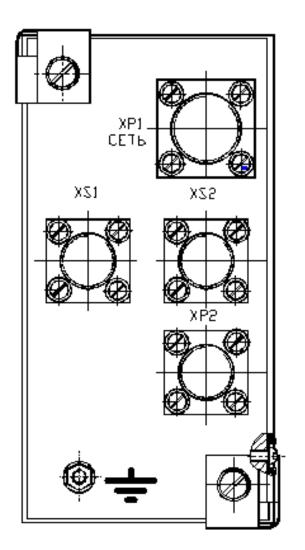


Рисунок Б.1 (продолжение)

Рисунок Б.2 (остальное см. рисунок Б.1)

Івх, мА	Рисунки
4-20	Б.1
0-5	Б.2

Приложение В СТРУКТУРНАЯ СХЕМА БЛОКОВ С ВХОДНЫМ СИГНАЛОМ (0-5) мА

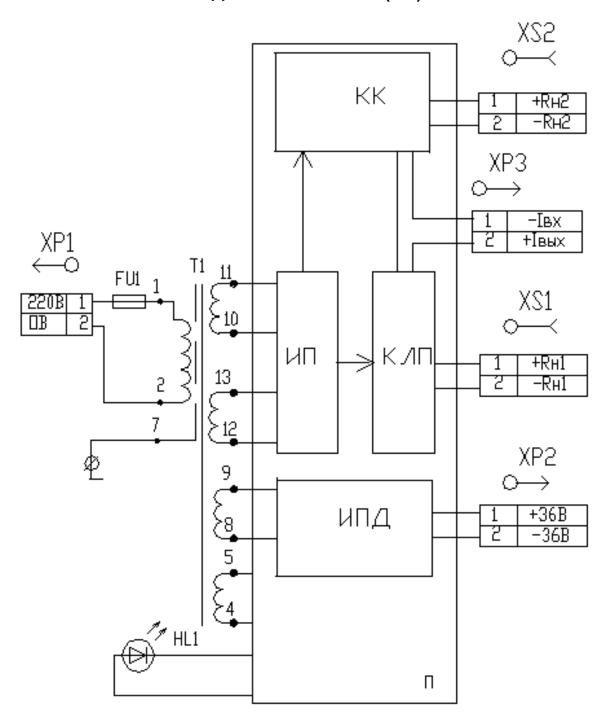


Рисунок В.1

Приложение Г СТРУКТУРНАЯ СХЕМА БЛОКОВ С ВХОДНЫМ СИГНАЛОМ (4-20) мА

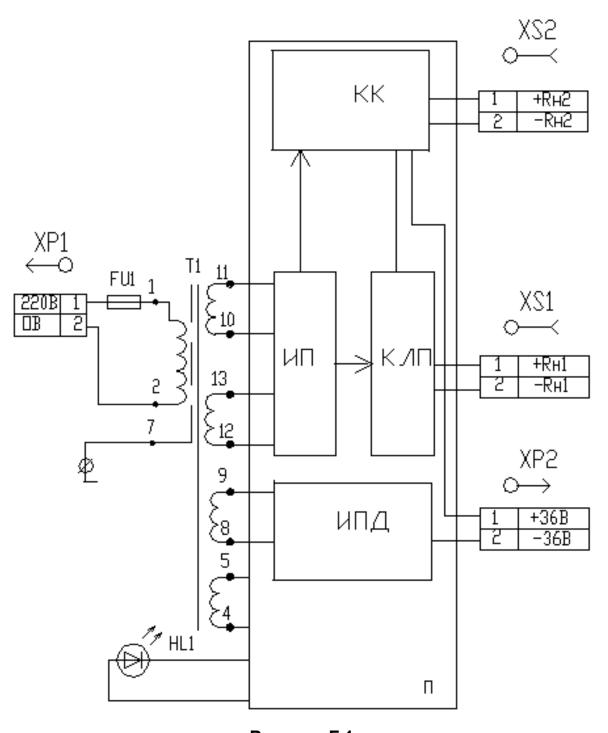


Рисунок Г.1

Приложение Д СХЕМЫ ВНЕШНИХ СОЕДИНЕНИЙ БЛОКОВ С ВХОДНЫМ СИГНАЛОМ (0-5) мА

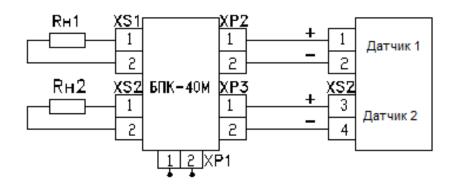


Рисунок Д.1

Приложение E СХЕМЫ ВНЕШНИХ СОЕДИНЕНИЙ БЛОКОВ С ВХОДНЫМ СИГНАЛОМ (4-20) мА

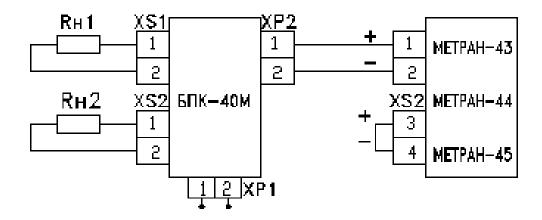


Рисунок Е.1

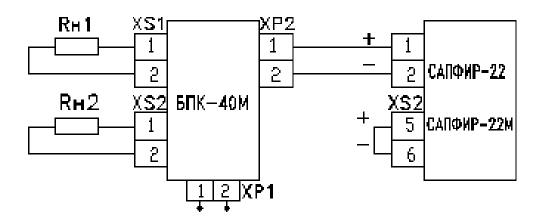
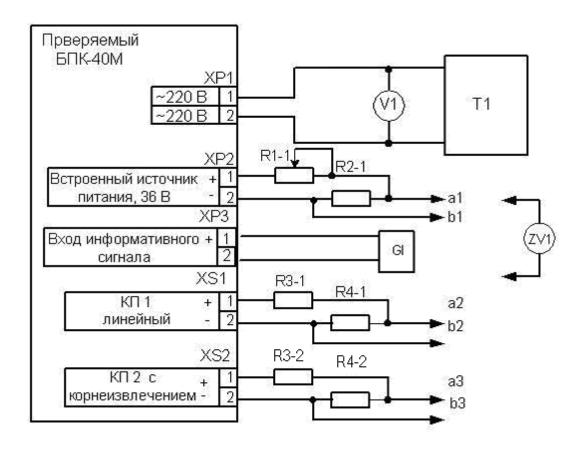



Рисунок Е.2

ВНИМАНИЕ! Для нормальной работы блоков при использовании только одного выходного канала (либо с пропорциональной, либо с корнеизвлекающей зависимостью) необходимо подключить на выход неиспользуемого канала нагрузку, величина которой приведена в приложении Ж (R3). Нагрузки Rн1 и Rн2 не должны быть гальванически связаны друг с другом.

Приложение Ж СХЕМА ПОВЕРКИ БЛОКОВ

V1	Вольтметр переменного тока
T1	Лабораторный автотрансформатор
	and the second s

ZV1 Цифровой вольтметр

R1-1 Магазин сопротивлений MCP-63

R3-1, R3-2 Резистор $0.5 \text{ Bt } \pm 5 \%$:

– для выходного сигнала 4-20 мА – 650 Ом;

– для входного сигнала 0-5 мА – 2,4 кОм.

R2-1, R4-1, R4-2 Эталонная мера сопротивления Р331 100 Ом

КП Канал преобразования

GI Генератор постоянного тока КИСС-03

Рисунок Ж.1 – Схема подключения для проверки блоков

При поверке блоков с выходным сигналом (4-20) мА разъем XP3 не используется

Контактная информация:

Адрес: 454047, Россия, Челябинск,

ул. Павелецкая 2-я, д. 36, стр.3, оф. 203

Телефон: +7 351 725-75-64

Факс: +7 351 725-89-59

E-mail: sales@tpchel.ru

Сайт: www.tpchel.ru

Сервисная

+7 (351) 725-74-72, 725-75-10

служба:

Продукция произведена ООО «Теплоприбор-Сенсор»

2023